Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant.

نویسندگان

  • Damian Gawel
  • Phuong T Pham
  • Iwona J Fijalkowska
  • Piotr Jonczyk
  • Roel M Schaaper
چکیده

The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A strong mutator effect caused by an amino acid change in the alpha subunit of DNA polymerase III of Escherichia coli.

Most potent mutators heretofore detected in Escherichia coli are associated with defects in epsilon subunit of DNA polymerase III, encoded by the dnaQ gene. To elucidate the role of the alpha subunit, the catalytic subunit of the polymerase, in maintaining the high fidelity of DNA replication, we isolated a mutator mutant, the mutation (dnaE173) of which resides on the dnaE gene, encoding the a...

متن کامل

A novel mutator of Escherichia coli carrying a defect in the dgt gene, encoding a dGTP triphosphohydrolase.

A novel mutator locus in Escherichia coli was identified from a collection of random transposon insertion mutants. Several mutators in this collection were found to have an insertion in the dgt gene, encoding a previously characterized dGTP triphosphohydrolase. The mutator activity of the dgt mutants displays an unusual specificity. Among the six possible base pair substitutions in a lacZ rever...

متن کامل

Processivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy.

Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders...

متن کامل

Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by ext...

متن کامل

Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 "antimutator" DNA polymerases.

DNA polymerases replicate DNA with high fidelity lab, which demonstrated that single point mutations in the T4 DNA polymerase gene can increase or decrease because of accurate nucleotide incorporation coupled with exonucleolytic proofreading to remove misinmutation rates by 100-fold or more (Drake et al. 1969). Mutational analysis is a powerful method to probe corporated nucleotides. This state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 5  شماره 

صفحات  -

تاریخ انتشار 2008